1) Input Your favourite gene (e.g. Nanog).
2) Pick one probeset to start with.
3) Use organism filter to find Affymetrix platforms for Your specie (24 species listed)
4) Start with one platform, e.g U133 for human or 430 for mouse
5) Apply dataset filters to standard deviation (default is 0.29). Increasing the threshold results in lesser number of datasets used and faster output.
6) Try out using “number of most variant datasets” from dataset filters by using only 20 datasets where the query probe varies the most
7) Enable show cell tooltips from Output options to see more information on the output. Be patient for the information boxes to load.
8) Try out cloud tags of datasets' annotations (mouse-hovering on the dendogram)
9) Using tag clouds select a subcluster of the datasets by clicking on a (tiny) gray square (after the page has fully loaded) on the dendogram and go and check out expression profiles using ExpressView link. Be aware that selecting many datasets makes ExpressView calculations very slow so choose up to 30 datasets.
10) Cluster the genes by their profiles by enabling the option from Output
11) Input a set of genes to compare their similarity to Your one query gene using Gene filters option. Use for example Your other favourite genes or genes belonging to some protein complex or pathway
12) Send output to g:Profiler for functional profiling using GO annotations link
13) Make a query of a gene from mouse and human platforms. Compare the output gene lists and their respective g:Profiler results.

g:Profiler (http://biit.cs.ut.ee/gprofiler)

14) If You have Your favourite dataset in hand then pick most highly expressed genes and use them as input
15) Do the same as in previous exercise but this time also select ordered list query option. Do You see a difference?
16) If You have certain chromosome location of interest then input it to g:Profiler to see what genes are located there and if some GO annotation, pathway or regulatory motif comes up as significant
17) If You have several experiments that result in a gene list (e.g. microarrays) then use the most highly/lowly expressed genes as input in g:cocoa that runs the same g:profiler analysis on several gene lists simultaneously. Find out what functions are constantly significant and which ones change from experiment to experiment.
18) Familiarise Yourself with ortholog mapping tool g:Orth for converting human genes to mouse for example and name conversion tool g:Convert to get from gene names to Affymetrix IDs to protein names.

19) Either upload Your own expression dataset by creating a folder or pick one of the existing datasets.

20) Choose a pathway of interest by Your previous knowledge or select a pathway with many mapping probes. Start Animation. Look how much and which genes change their expression.

21) Find a gene that has more than one probe and look if all of the probes express at the same level.

22) Create a picture with most interesting datapoints for presentation using CineFilm, rename the Condition titles and make a figure for Your next presentation.

23) Try out Pathway components selection menu to animate only a subsection of probesets/genes.

GraphWeb (http://biit.cs.ut.ee/graphweb)

24) If You known connections between Your genes then use this network together with public protein-protein interaction (PPI) data ([From a file in our server](http://biit.cs.ut.ee/graphweb)) and find gene pairs being present in both networks by applying Remove edges with less than N labels.

25) Filter PPI networks with Your genes of interest by using Network neighbourhood, keep the distance 1.

26) Look for modules in Your data using different network algorithms and filter out different module sizes. Check the functional annotations of Your modules.

VisHiC (http://biit.cs.ut.ee/vishic)

27) Use example datasets provided and limit the cluster sizes to minimum 20 genes and maximum 100 genes. With these options You get more reasonable output to play with.

28) Search for Your favourite gene(s) from the clusters using search box above the dendogram (look for red brackets to appear on dendogram)

29) Look for cluster having unique annotations (marked with asterix in the first column of the Cluster statistics table)

30) Adjust the cluster size limits and additional threshold to make the output even more compact.

Those of You who work with human or mouse embryonic stem cells can play around in Embryonic Stem Cells Database (ESCDb at http://biit.cs.ut.ee/escd).